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Abstract

With petascale systems already available, researchers are devoting their attention to the issues needed
to reach the next major level in performance, namely, exascale. Explicit message passing using the
Message Passing Interface (MPI) is the most commonly used model for programming petascale systems
today. In this paper, we investigate what is needed to enable MPI to scale to exascale, both in the
MPI specification and in MPI implementations, focusing on issues such as memory consumption and
performance. We also present results of experiments related to MPI memory consumption at scale on
the IBM Blue Gene/P at Argonne National Laboratory.

1 Introduction

We have already reached an era where the largest parallel machine in the world has close to 300,000 cores
(the IBM Blue Gene/P at Jülich Supercomputing Center). Table 1 shows the top five largest parallel ma-
chines in terms of number of cores in the latest (June 2010) edition of the Top500 list [31]. These machines
range in size from 150,000 to 300,000 cores. The most commonly used model for programming large-scale
parallel systems today is MPI, and in fact, all the systems in Table 1 use MPI implementations that are
derived from MPICH2 [23].

Although MPI runs successfully today on up to 300,000 cores, future extreme-scale systems are expected
to comprise millions of cores. These systems may have several hundred thousand “nodes” (Figure 1), and
each node itself may have large numbers (hundreds) of cores. The cores may comprise a mix of regular
CPUs and accelerators such as GPUs, as illustrated in Figure 2. Many researchers and users wonder whether
MPI will scale to systems of this size, or what is required to make scale MPI to this level. Furthermore, at

Table 1: Top five machines with the largest number of cores in the June 2010 Top500 list [31].

System Location Number of Cores
IBM BG/P Jülich Supercomputing Center 294,912
Cray XT5 Oak Ridge National Laboratory 224,162
IBM BG/L Lawrence Livermore National Laboratory 212,992
IBM BG/P Argonne National Laboratory 163,840
IBM BG/P Lawrence Livermore National Laboratory 147,456
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Figure 1: Future extreme-scale platforms with hundreds of thousands of nodes, each node with hundreds of
cores.

exascale, MPI is likely to be used as part of a “hybrid” programming model (MPI+X), much more so than
it is today. In such a model, MPI will be used to communicate between address spaces in conjunction
with some other “shared memory” programming model (such as OpenMP, UPC, CUDA, or OpenCL) for
programming within an address space. In other words, MPI and MPI implementations will need to support
efficient hybrid programming. In this paper, we discuss the issues of scaling MPI to exascale, in terms of
both what is needed in the MPI specification and what is needed from MPI implementations.

2 Scaling MPI to Exascale

Although the original designers of MPI were not thinking of exascale, MPI was always designed with scal-
ability in mind. For example, a design goal was to enable implementations that maintain very little global
state per process. Another design goal was to require very little memory management within MPI; all mem-
ory for communication can be in user space. MPI defines many operations as collective (called by a group
of processes), which enables them to be implemented scalably and efficiently. Nonetheless, examination of
the MPI standard reveals that some parts of the specification may need to be fixed for exascale. Section 3
describes these issues. Many of the issues are being addressed by the MPI Forum for MPI-3.

The main factors affecting MPI scalability are performance and memory consumption. A nonscalable
MPI function is one whose time or memory consumption per process increase linearly (or worse) with the
total number of processes. For example, if the memory consumption of MPI_Comm_dup increases linearly
with the number of processes, it is not scalable. Similarly, if the time taken by MPI_Comm_spawn increases
linearly or more with the number of processes being spawned, it indicates a nonscalable implementation of
the function. Such examples need to be identified and fixed in the specification and in implementations. The
goal should be to use constructs that require only constant space per process.

From an implementation perspective, the main requirement is that consumption of resources (memory,
network connections, etc.) must not scale linearly with the number of processes. Since failures are expected
to be common because of the large number of components, the implementation also needs to be resilient
and tolerant to faults. Fault tolerance is needed from all levels of the stack—hardware, system software, and
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Figure 2: Many cores on a node.

applications—and the MPI library must play its role. Since hybrid programming is likely to be common
at exascale, the MPI implementation must also efficiently support concurrent communication from multiple
threads of a process. In addition, the MPI implementation must provide excellent performance for the entire
range of message sizes and for all MPI functions, not just simple latency and bandwidth benchmarks. In
other words, there should be fewer performance surprises.

We discuss all these issues in further detail in the following sections.

3 Scalability Issues in the MPI Specification

Below we discuss aspects of the MPI specification that may have issues at extreme scale.

3.1 Sizes of Arguments to Some Functions

Some MPI functions take arguments that are arrays of size equal to the number of processes. An example
is the irregular or “v” (vector) version of the collectives, such as MPI_Gatherv and MPI_Scatterv.
These functions allow users to transfer different amounts of data among processes, and the amounts are
specified by using an array of size equal to the number of processes. Using arrays that scale linearly with
system size is nonscalable. An extreme example is the function MPI_Alltoallw, which takes six such
arrays as arguments: counts, displacements, and datatypes for both send and receive buffers. On a million
processes, each array will consume 4 MiB on each process (assuming 32-bit integers), requiring a total of
24 MiB just to call the function MPI_Alltoallw (i.e., just to pass the parameters to the function).
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Figure 3: Time for doing a 0-byte alltoallv on IBM BG/P (no actual communication takes place).

Furthermore, an MPI implementation is forced to scan most of these arrays to determine what data needs
to be communicated. On large numbers of processes, the time to read the entire array itself can be large,
and it increases linearly with system size. This is particularly harmful in cases where a process needs to
communicate with only a small number of other processes. For example, Figure 3 shows the time for a 0-
byte MPI_Alltoallv on an IBM Blue Gene/P. No actual communication takes place since it is specified
as 0 bytes. The time taken is just for each process to scan through the input array to determine that no
communication is needed. As the number of processes increases, this time itself becomes significant. The
MPI Forum is discussing ways to address this problem in MPI-3 [19], such as by defining sparse collective
operations. A concrete proposal has been put forth in [13].

3.2 Graph Topology

MPI allows users to define virtual process topologies that express the communication pattern in the applica-
tion. This feature in turn provides the implementation an opportunity to map the processes to the underlying
system in a way that minimizes communication costs. Two types of virtual topologies are supported: a
Cartesian topology and a general graph topology. The graph topology, which has existed since the first
version of MPI, is one of the most nonscalable parts of the standard. It requires that each process specify
the entire communication graph of all processes, not just its own communication information. The memory
required for the purpose would clearly make it unusable on an exascale system. Other limitations of this
interface are discussed in [32].

Thankfully, this problem has already been fixed in the latest version of the MPI Standard, MPI 2.2 [18].
Two new functions, MPI_Dist_graph_create and MPI_Dist_graph_create_adjacent, are
defined that allow the user to specify the graph in a distributed, memory-efficient manner. However, the old
interface is still available; and unless applications using the old interface make the effort to switch to the
new interface, they will encounter scalability issues at large scale [12].

3.3 All-to-all Communication

MPI defines functions that allow users to perform all-to-all communication. All-to-all communication,
however, is not a scalable communication pattern. Each process has a unique data item to send to every
other process, which leads to limited opportunities for optimization compared with other collectives in MPI.
This is not a problem with the MPI specification but is something that applications should be aware of and
avoid as far as possible. Avoiding the use of all-to-all may require applications to use new algorithms.
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3.4 Fault Tolerance

On exascale systems, the probability of failure or some other error in some part of the system is expected
to be relatively high. As a result, greater resilience against failure is needed from all components of the
software stack, from low-level system software to libraries and applications. The MPI specification already
provides some support to enable users to write programs that are resilient to failure, given appropriate
support from the implementation [11]. For example, when a process dies, instead of aborting the whole job,
an implementation can return an error to any other process that tries to communicate with the failed process.
The application then must decide what to do at that point.

However, more support from the MPI specification is needed for true fault tolerance. For example,
the current set of error classes and codes needs to be extended to indicate process failure and other failure
modes. Support is needed in areas such as detecting process failure, agreeing that a process has failed,
rebuilding a communicator in the event of process failure or allowing it to continue to operate in a degraded
state, and timing out for certain operations such as the MPI-2 dynamic process functions. A number of other
researchers have studied the issue of fault tolerance in MPI in greater detail [4, 9, 14]. The MPI Forum is
actively working on adding fault-tolerance capabilities to MPI-3 [20].

3.5 One-Sided Communication

Many applications have been shown to benefit from one-sided communication, where a process directly
accesses the memory of another process instead of sending and receiving messages. For this reason, MPI-2
also defined an interface for one-sided communication that uses put, get, and accumulate calls and three
different synchronization methods. This interface, however, has not been widely used for a number of
reasons, the main being that its performance is often worse than regular point-to-point communication. The
culprit is often the synchronization associated with one-sided communication. Another limitation is the
lack of a convenient way to do atomic read-modify-write operations, which are useful in many parallel
algorithms. Other issues with MPI one-sided communication are discussed in [3]. The MPI Forum is
considering ways to fix these problems in MPI-3 [22].

3.6 Representation of Process Ranks

Another nonscalable aspect of MPI is the explicit use of lists of process ranks in some functions, such as the
group creation routines MPI_Group_incl and MPI_Group_excl. While more concise representations
of collections of processes are possible (for example, some group routines support ranges), the use of this
sort of unstructured, nonscalable enumeration in some functions is problematic. Eliminating the explicit
enumeration should be considered as an option for large scale.

4 MPI Implementation Scalability

MPI implementations must pay attention to two aspects as the number of processes is increased: memory
consumption of any function and performance of all collective functions (not just the commonly optimized
collective communication functions but also functions such as MPI_Init and MPI_Comm_split). We
discuss some specific issues below.

4.1 Process Mappings

MPI communicators usually contain a mapping from MPI process ranks to processor ids. This mapping is
often implemented as an array of size equal to the number of processes, which enables simple, constant-
time lookup. Although convenient and fast, this solution is not scalable because it requires linear space
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Figure 4: Maximum number of communicators that could originally be created with MPI Comm dup on
IBM BG/P for varying numbers of processes.

per process per communicator and quadratic space over the system. To alleviate the problem, as a first
step, communicators with the same process-to-processor mapping can share mappings. For example, if a
communicator is duplicated with MPI_Comm_dup, the new communicator can share the mapping with the
original communicator. (The MPICH2 implementation already does this.)

In general, however, there is a need to explore more memory-efficient mappings, at least for common
cases. Simple (and very restricted) solutions within the context of Open MPI were considered in [5]. A more
general approach could be based on representations of mappings by simple linear functions, ia + b mod
p. The identity mapping is often all that is needed for MPI_COMM_WORLD. Such linear representations,
when possible, can be easily detected and cover many common cases, for example, subcommunicators that
form consecutive segments from MPI_COMM_WORLD. A solution in this direction was explored in [34].
Other approaches, incorporated into the FG-MPI implementation, were described in [16]. However, this
simple mapping covers only a small fraction of the p! possible communicators, most of which cannot be
represented by such simple means. For more general approaches to compact representations of mappings,
see the citations in [34].

4.2 Creation of New Communicators

Creating duplicate communicators can consume a lot of memory at large scale if care is not taken. In fact,
an application (Nek5000) running on the IBM Blue Gene/P at Argonne National Laboratory initially failed
at only a few thousand processes because it ran out of memory after less than 60 calls to MPI_Comm_dup.

To study this issue, we ran a simple test that calls MPI_Comm_dup in a loop several times until it fails.
We ran this test on the IBM BG/P and varied the number of processes. Figure 4 shows the results. Note that
the maximum number of communicators supported by the implementation by default is 8,189 (independent
of MPI_Comm_dup) because of a limit on the number of available context ids.

The number of new communicators that can be created drops sharply starting at about 2,048 processes.
For 128K processes, the number drops to as low as 264. Although the MPI implementation on the BG/P
does not duplicate the process-to-processor mapping in MPI_Comm_dup, it allocates some memory for
optimizing collective communication. For example, it allocates memory to store “metadata” (such as counts
and offsets) needed to optimize MPI_Alltoall and its variants. This memory usage is linear in p. Having
such metadata per communicator is useful as it allows different threads to perform collective operations on
different communicators in parallel. However, the per communicator memory usage increases with system
size. Since the amount of memory per process is limited on the BG/P (512 MiB in virtual node mode), this
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Figure 5: MPI memory usage on BG/P after 32 calls to MPI Comm dup of MPI COMM WORLD (in virtual
node mode).

optimization also limits the total number of communicators that can be created with MPI_Comm_dup.
This scalability problem can be avoided in a number of ways. The simplest way is to use a BG/P

environment variable to disable collective optimizations, which eliminates the extra memory allocation.
However, it has the undesirable impact of decreasing the performance of all collectives. Another approach
is to use an environment variable that delays the allocation of memory until the user actually calls MPI_
Alltoall on the communicator. This approach helps only those applications that do not perform MPI_
Alltoall.

A third approach, which we have implemented, is to use a buffer pool that is sized irrespective of
the number of communicators created. Since the buffers exist solely to permit multiple threads to invoke
MPI_Alltoall concurrently on different communicators, it is sufficient to have as many buffers as the
maximum number of threads allowed per node, which on the BG/P is four. By using a fixed pool of buffers,
the Nek5000 application scaled to the full system size without any problem.

Figure 5 shows the memory consumption in all these cases after 32 calls to MPI_Comm_dup. The fixed
buffer pool enables all optimizations for all collectives and takes up only a small amount of memory.

4.3 Scalability of MPI Init

Since the performance of MPI_Init is not usually measured, implementations may neglect scalability
issues in MPI_Init. On large numbers of processes, however, a nonscalable implementation of MPI_
Initmay result in MPI_Init itself taking several minutes. For example, on connection-oriented networks
where a process needs to establish a connection with another process before communication, it is easiest
for an MPI implementation to set up all-to-all connections in MPI_Init itself. This operation, however,
involves Ω(p2) amount of work and hence is nonscalable. A better approach is to establish no connections
in MPI_Init and instead establish a connection when a process needs to communicate with another. This
method does make the first communication more expensive, but only those connections that are really needed
are set up. It also minimizes the number of connections, since applications written for scalability are not
likely to have communication patterns where all processes directly communicate with all other processes.

Figure 6 shows the time taken by MPI_Init on a Linux cluster with TCP when all connections are set
up eagerly in MPI_Init and when they are set up lazily. The eager method is clearly not scalable.
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using TCP.

4.4 Scalable Algorithms for Collective Communication

MPI implementations already use sophisticated algorithms for collective communication. Different algo-
rithms are used depending on the message size: for short messages, they use an algorithm that minimizes
latency; for long messages, they use algorithms that minimize bandwidth consumption. For example, broad-
cast is often implemented by using a binomial tree for short messages and a scatter-allgather for long mes-
sages [6, 30]. The scatter-allgather may become inefficient at large scale because the scatter may result in
blocks that are too small. For example, for a 1 MiB broadcast on one million processes, the scatter phase
will result in blocks of size 1 byte. Such problems can be countered by using hybrid algorithms that first
do a logarithmic broadcast to a subset of nodes and then a scatter/allgather on many subsets at the same
time [33]. Algorithms with similar properties for reduction operations are given in [26].

Global collective acceleration supported by many networks such as Quadrics, InfiniBand, and Blue
Gene may be another solution for collectives on MPI_COMM_WORLD. On the Blue Gene/P, for example, the
MPI_Broadcast, MPI_Reduce, MPI_Allreduce, MPI_Scatter, MPI_Scatterv, and MPI_
Allgather collectives take advantage of the combine and broadcast features of the tree network [2].

4.5 Enabling Hybrid Programming

Exascale machines are expected to have many more cores per node than today, but the memory per core is
likely to remain the same. Applications, however, want to access more and more memory from each process.
A solution to this problem is to use a combination of shared-memory and message-passing programming
models (MPI+X): MPI for moving data between address spaces and some shared-memory model (X) for
accessing data within an address space that spans multiple cores or even multiple nodes. Options for X
include the following.

• OpenMP. This option has been well studied [15, 17, 25, 27]. One limitation is that the shared memory
is usually restricted to the address space of a single physical node.

• PGAS languages such as UPC [8] or CoArray Fortran [24]. This option is not as well understood,
although there has been some recent preliminary work with UPC [7]. The advantage of this approach
is that the shared address space can span the memories of multiple nodes.

• CUDA/OpenCL. This option is needed for GPU-accelerated systems.
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What makes hybrid programming possible is the carefully defined thread-safety semantics of MPI [10]. This
specification does not require a particular threads implementation or library, such as Pthreads or OpenMP.
Rather, it defines a mechanism by which the user can request the desired level of thread safety and the imple-
mentation can indicate the level of thread safety that it provides. This mechanism allows the implementation
to avoid incurring the cost of providing a higher level of thread safety than the user needs.

The MPI Forum is exploring further enhancements to MPI to support efficient hybrid programming [21].
An interesting proposal being discussed is to extend MPI to support multiple communication endpoints per
process [28]. The basic idea is as follows. In MPI today, each process has one communication endpoint
(rank in MPI_COMM_WORLD). Multiple threads communicate through that one endpoint, requiring the
implementation to do use locks, which turn out to be expensive [29]. This proposal allows a process to
define multiple endpoints. Threads within a process attach to different endpoints and communicate through
those endpoints as if they are separate ranks. The MPI implementation can avoid using locks if each thread
communicates on a separate endpoint.

4.6 Fewer Performance Surprises

Sometimes we hear the following from users:

• “I replaced MPI_Allreduce by MPI_Reduce + MPI_Bcast and got better results.”

• “I replaced MPI_Send(n) by MPI_Send(n/k) + MPI_Send(n/k) + ... + MPI_Send(n/k)
and got better results.”

• “I replaced MPI_Bcast(n) by my own algorithm for broadcast using MPI_Send(n) and MPI_
Recv(n) and got better results.”

None of these situations should happen. If there is an obvious way intended by the MPI standard of improv-
ing communication time, a sound MPI implementation should do so, and not the user! We refer to these as
performance surprises.

Although MPI is portable, there is considerable performance variability among MPI implementations—
lots of performance surprises. In [35], we defined a set of common-sense, self-consistent performance
guidelines for MPI implementations, for instance, the following:

• Subdividing messages into multiple messages should not reduce the communication time. For exam-
ple, an MPI_Send of 1500 bytes should not be slower than two calls to MPI_Send for 750 bytes
each.

• Replacing an MPI function with a similar function that provides additional semantic guarantees should
not reduce the communication time. For example, MPI_Send should not be slower than MPI_
Ssend.

• Replacing a specific MPI operation by a more general operation by which the same functionality can
be expressed should not reduce communication time. For example, MPI_Scatter should not be
slower than MPI_Bcast (Figure 7).

Nonetheless, we found instances where such simple requirements are violated. For example, on the IBM
BG/P, scatter is about four times slower than broadcast, as Figure 8 shows. The reason is because broadcast
is implemented by using the hardware support provided by the interconnection network, whereas scatter is
implemented in software. However, it should be possible to implement scatter by doing a broadcast and
discarding the unnecessary data and achieve four times better performance. It would, of course, need extra
memory allocation in the implementation.
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A similar performance surprise is encountered in most MPI implementations because of the switch from
eager to rendezvous protocol at a particular message size. Short messages are sent eagerly to the destination
assuming that there is enough memory available to store them. At some message size, the implementa-
tion switches to a rendezvous protocol, where it waits for an acknowledgment from the destination that the
matching receive has been posted and hence memory is available to store in the incoming message. This
often leads to a performance graph similar to the one in Figure 9, where there is a sharp jump in communi-
cation time when the rendezvous threshold is crossed. In this example, a user could get better performance
for a 1500-byte message by sending it as two 750-byte messages instead.

If care is not taken, such performance surprises will be even more common at exascale because of
the large numbers of processes and unexpected interactions among communication patterns at large scale.
Tools need to be written to check for these requirements, which would help implementers identify and fix
problems.

5 Conclusions

Exascale systems are expected to be available in less than a decade. Although MPI runs successfully on
today’s petascale systems, for it to run efficiently on exascale systems with millions of cores, some issues
need to be fixed both in the MPI specification and in MPI implementations. These issues are related primarily
to memory consumption, performance, and fault tolerance. At small scale, memory consumption is often
overlooked, but it becomes critical at large scale particularly because the amount of memory available per
core is not expected to increase. The MPI Forum, which is currently meeting regularly to define the next
version of MPI (MPI-3), is addressing several of the issues that must be fixed in the MPI specification.
Correspondingly, MPI implementations are also addressing the issues that they must fix in order to scale to
exascale. As a result of these efforts, we believe MPI will run successfully on exascale systems when they
are available. Further details on issues related to scaling MPI to millions of cores can be found in [1].
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